Acceptor levels in p-type Cu(2)O: rationalizing theory and experiment.
نویسندگان
چکیده
Understanding conduction in Cu(2)O is vital to the optimization of Cu-based p-type transparent conducting oxides. Using a screened hybrid-density-functional approach we have investigated the formation of p-type defects in Cu(2)O giving rise to single-particle levels that are deep in the band gap, consistent with experimentally observed activated, polaronic conduction. Our calculated transition levels for simple and split copper vacancies explain the source of the two distinct hole states seen in DLTS experiments. The necessity of techniques that go beyond the present generalized-gradient- and local-density-approximation techniques for accurately describing p-type defects in Cu(I)-based oxides is discussed.
منابع مشابه
Frontier molecular orbital analysis of Cu – O reactivity n 2 *
Frontier molecular orbital (FMO) theory coupled with density functional calculations has been applied to investigate the chemical 2 2 22 reactivity of three key bioinorganic Cu –O complexes, the mononuclear end-on hydroperoxo-Cu(II), the side-on bridged m–h :h –O n 2 2 Cu(II) dimer and the bis-m-oxo Cu(III) dimer. Two acceptor orbitals (s* and p*) of each complex and two types of donating subst...
متن کاملModeling the polaronic nature of p-type defects in Cu2O: the failure of GGA and GGA + U.
The exact nature of the hole traps reported deep in the band gap of Cu(2)O has been a topic of vigorous debate, with copper vacancies and oxygen interstitials both having been proposed as the relevant defects. In this article, the electronic structure of acceptor-forming defects in Cu(2)O, namely, copper vacancies and oxygen interstitials, is investigated using generalized gradient approximatio...
متن کاملElectron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملElectron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملRationalizing the Strength of Hydrogen-Bonded of Molybdate-Phosphonic acid Complex (1:2): Density Functional Theory Studies
The relative stability of hydrogen-bonded of Molybdate-Phosphonic Acid (MPA) complex (1:2) ingas phase has been carried out using Density Functional Theory (DFT) methods. The methods are usedfor calculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets: D95**and 6-31+G(d,p) for hydrogen and oxygen atoms; LANL2DZ for Mo and Phosphorus. Predictedhydrogen-bond geom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2009